Nur so zur Info bezüglich dem Titel: Ein harderes habe ich bisher tatsächlich nicht gefunden.
A group of people with assorted eye colors live on an island. They are all perfect logicians -- if a conclusion can be logically deduced, they will do it instantly. No one knows the color of their eyes. Every night at midnight, a ferry stops at the island. If anyone has figured out the color of their own eyes, they [must] leave the island that midnight. Everyone can see everyone else at all times and keeps a count of the number of people they see with each eye color (excluding themselves), but they cannot otherwise communicate. Everyone on the island knows all the rules in this paragraph.
Jaha, soweit. Wer diese Zeilen noch liest, und nicht ausgestiegen ist, ist vielleicht tatsächlich verrückt genug, um es zu knacken.
On this island there are 100 blue-eyed people, 100 brown-eyed people, and the Guru (she happens to have green eyes). So any given blue-eyed person can see 100 people with brown eyes and 99 people with blue eyes (and one with green), but that does not tell him his own eye color; it could be 101 brown and 99 blue. Or 100 brown, 99 blue, and he could have red eyes. The Guru is allowed to speak once (let's say at noon), on one day in all their endless years on the island. Standing before the islanders, she says the following:"I can see someone who has blue eyes."
Und die große Quizfrage:
Who leaves the island, and on what night?Was ist das Gegenteil von Entwarnung? Also, wenn jemand dann sagt, dass ist
keine leichte Fangfrage, die man auch als Unwissender leicht lösen kann, dass dahinter
kein Code ist, keine grammatikalische Ambiguität, die man ausbeuten kann, usw...? Na jedenfalls, dieses Ungetüm und nähere Infos bitte
dort abholen. Aus der Reihe "Logik-Puzzles, die absolut niemanden interessieren".